
Code Portability
and Performance

26th and 28th April 2022

1

Dr Tom Deakin

• Lecturer in Advanced Computer Systems
University of Bristol

• Khronos SYCL Outreach Officer
• Chair Khronos SYCL Advisory Panel
• Member of OpenMP ARB and Khronos SYCL Working Group
• Programming GPUs with OpenMP Tutorials
• Author of OpenMP for Computational Scientists Tutorial
• Co-Author of HandsOnOpenCL

• Twitter: @tjdeakin
• Email: tom.deakin@bristol.ac.uk
• Web: https://hpc.tomdeakin.com

2

mailto:tom.deakin@bristol.ac.uk
https://hpc.tomdeakin.com/

Agenda

• Performance Portability
• What is Performance Portability?
• How to measure Performance Portability and efficiency
• Performance Portability Metric

• Consistency of performance portability
• Cascade Plots

• The Productivity Dimension
• Writing Performance Portable Applications
• … in SYCL and OpenMP

3

Performance Portability

4

Processor diversity at (pre-)Exascale

5

At ORNL: AMD EPYC custom CPUs and Radeon Instinct GPUs (4 per node)

At ALCF: Intel Xeon Sapphire Rapids CPUs and Xe Ponte Vecchio GPUs (6 per node)

At LLNL: AMD EPYC Genoa CPUs and Radeon Instinct GPUs (4 per node)

At RIKEN: Fujitsu A64fx CPUs

At NERSC: AMD EPYC Milan CPUs and NVIDIA A100 GPUs

The Next Platform, Jan 13th 2020: “HPC in 2020: compute engine diversity gets real”
https://www.nextplatform.com/2020/01/13/hpc-in-2020-compute-engine-diversity-
gets-real/

Recent architectural trends

CPUs
• Many “complex” cores (80 per

socket).
• Wide vectors (AVX-512, SVE 128-2048

bits).
• Chiplet manufacturing.
• Deep cache hierarchy. NUMA.
• Mainly DRAM, but…

• Intel Xeon Phi MCDRM
• Fujitsu A64FX HBM2
• NVIDIA Grace LPDDR5x

GPUs
• Lots of “lightweight” cores.
• Very wide vector units (warp).
• Cores becoming more complex:

• Specialised in-core accelerators.
• Interconnects (NVLink).
• Latest (specialised) memory

technology:
• GDDR
• HBM

• Deepening memory hierarchy:
• Caches, scratchpad (shared), …

6

Latency Throughput

What is performance portability?

• Needs to be a good fraction of best
achievable (i.e., hand optimised).

• Range of architectures depends on
your goal, but important to allow for
future developments.

7Image from Wikipedia, public domain

“A code is performance portable if it can achieve a similar fraction of
peak hardware performance on a range of different target architectures”

Measuring efficiency

• Compare relative application performance on different processors.
• Processors have different performance characteristics.
• Architectural efficiency:
• Percentage of peak hardware performance.
• E.g. achieved GB/s or FLOP/s vs theoretical tech sheet.

• Application efficiency:
• Performance relative to specialised, hand-tuned, unportable, “best” version.
• I.e. vs “World record”.

8

Collecting performance data

• Compiling codes on multiple
systems crucial
• Compiling codes with multiple

compilers crucial
• Document compile and

execution steps in systematic
and reproducible scripts

9

https://github.com/UoB-HPC/performance-portability

Core-bound, or not core-bound?

• Follow a procedure by Voysey (Met Office) to help discover performance
limiting factors:
1. Run on all cores of one socket. (e.g. 18 cores of one Broadwell socket)
2. Run on half of cores of both sockets. (e.g. 2 x 9 cores)

• If performance improves, performance is bound in shared resources such
as memory bandwidth.
• E.g. Two sockets give you twice the main memory bandwidth of one socket.

• Otherwise, bound by on-core resources.
• Same number of cores, so have same number of FLOPs, same cache bandwidth/size,

etc.
• Warning! Sometimes see increase in clock speed for the two-socket run.

10

A. Voysey and M. Glover. “Performance of Met Office Weather and Climate Codes on Cavium ThunderX2 Processors.” (2018).
URL https://www.youtube.com/watch?v=xSLY0RJBEAQ. Presentation at Arm Research Summit, Austin, Texas.

BabelStream

• Benchmarks achievable (main) memory bandwidth.
• Based on McCalpin STREAM, except:
• Arrays allocated on the heap.
• Problem size known only at runtime.

• Written in many programming models.
• Constructed of simple vector operations, e.g.:
• Copy: c[i] = a[i]
• Mul: b[i] = scalar * c[i]
• Add: c[i] = a[i] + b[i]
• Triad: a[i] = b[i] + scalar * c[i]

11

https://github.com/UoB-HPC/BabelStream

https://github.com/UoB-HPC/BabelStream

Modelling memory bandwidth

• Arrays of size N FP64 elements
• Read B and C: 2N
• Write A: N
• Total 3N * sizeof(double)

= 3 * N * 8 bytes
= 24 * N bytes
• Divide by runtime to get

bytes/second
• Multiply by 1E-9 to get GB/sec

(base 10)
• Compare to theoretical peak for

architectural efficiency

12

BabelStream heatmaps
Peak performance

OpenMP
Kokkos

OpenACC
CUDA

OpenCL
SYCL

Cascade Lake
Skylake

Knights Landing
Rome

Power 9
ThunderX2
Graviton 2

A64FX
P100
V100
A100

Turing
Radeon VII

MI50
IrisPro Gen9

203
211
448
305
224
229
173
804
552
788

1161
533
488
729
26.8

163
180
315
481
241
226
169
595
559
831

1343
555
781
708
X

68.5
70.6
322
162
158
X
X
X

551
830

1361
555
99.0
88.3

X

X
X
X
X
X
X
X
X

551
837

1370
556
X
X
X

98.0
113
287
64.9

X
93.5

X
X

552
X

1356
554
821
778
27.3

100
110
263
287
200
217
54.3
147
526
774

1358
530
808
E

27.4

BabelStream Triad array size=2**25

200

400

600

800

1000

1200

Architectural efficiency

OpenMP
Kokkos

OpenACC
CUDA

OpenCL
SYCL

Cascade Lake
Skylake

Knights Landing
Rome

Power 9
ThunderX2
Graviton 2

A64FX
P100
V100
A100

Turing
Radeon VII

MI50
IrisPro Gen9

72%
83%
91%
74%
66%
80%
84%
79%
75%
88%
75%
87%
49%
71%
79%

58%
70%
64%

118%
71%
79%
82%
58%
76%
92%
86%
90%
78%
69%

X

24%
28%
66%
40%
47%

X
X
X

75%
92%
88%
90%
10%
9%
X

X
X
X
X
X
X
X
X

75%
93%
88%
90%

X
X
X

35%
44%
59%
16%

X
32%

X
X

75%
X

87%
90%
82%
76%
80%

36%
43%
54%
70%
59%
75%
26%
14%
72%
86%
87%
86%
81%

E
80%

BabelStream Triad array size=2**25

20

40

60

80

100

13https://doi.org/10.1109/P3HPC51967.2020.00006

x86 Intel

x86 AMD

Arm
(Marvell Amazon

Fujitsu)

NVIDIA GPU

AMD GPU

Intel GPU

POWER IBM

Performance Portability metric

14

Pennycook, Sewall and Lee: https://doi.org/10.1016/j.future.2017.08.007

Python scripts: https://github.com/UoB-HPC/performance-portability/tree/main/metrics

https://github.com/UoB-HPC/performance-portability/tree/main/metrics

BabelStream Triad PP metric

15

Platforms OpenMP Kokkos OpenACC CUDA OpenCL SYCL
All 75.1 0 0 0 0 0
All non-zero 75.1 75.4 27.3 86.1 46.6 47.4
Supported CPUs 77.9 71.6 35.9 0 30.8 36.1
Supported GPUs 72.2 81.2 22.8 86.1 81.4 81.7

https://doi.org/10.1109/P3HPC51967.2020.00006

How far have we come?

16https://doi.org/10.1109/P3HPC51967.2020.00006

How far has SYCL come?

17https://doi.org/10.1145/3456669.3456701

Consistency of Performance
Portability

18

What is performance portability?

• Needs to be a good fraction of best
achievable (i.e., hand optimised).

• Range of architectures depends on
your goal, but important to allow for
future developments.

19Image from Wikipedia, public domain

“A code is performance portable if it can achieve a similar fraction of
peak hardware performance on a range of different target architectures”

Cascade plots

20https://doi.org/10.1109/P3HPC51967.2020.00007

21

https://github.com/UoB-HPC/performance-portability/tree/main/metrics/notebooks

BabelStream Cascade plot

22Data from https://doi.org/10.1109/P3HPC51967.2020.00006

23https://doi.org/10.1109/P3HPC51967.2020.00007

The Productivity Dimension

24

Measuring Productivity

• “Ideal” application has one version that is Performant, Portable and
Productive.
• Significant specialisation for Performance and/or Portability can

impact Productivity.
• Intel Code Base Investigator measures code divergence.
• Specialisation using C pre-processor.

25

https://github.com/intel/code-base-investigator

Harrell et al https://doi.org/10.1109/P3HPC.2018.00006

https://github.com/intel/code-base-investigator

PP-CC plane

26
Figure from
https://doi.org/10.1109/MCSE.2021.3097276

Writing Performance Portable
Applications

27

Enabling performance portability

28
All images copyright of respective owners.

Open standard parallel programming models

Open-source programming abstractions

Your favourite
DSL and its
compiler

Descriptive vs Prescriptive

• Descriptive: describe computation, but implementation freedom to decide
how
• Prescriptive: all details provided of how to perform computation
• Descriptive is productive, but need the flexibility to prescribe where

needed for performance
• Collapse() clause:

• Good on GPUs for providing lots of parallel work.
• But care needed with auto-vectorising compilers on CPUs – check the report!

• Avoid the more prescriptive clauses: num_threads, num_teams,
thread_limit, etc
• Let the runtime decide
• Use environment variables to specialise on platforms if needed

29

Supinski, et at, https://doi.org/10.1109/JPROC.2018.2853600

Expressing Parallelism in SYCL

• Data parallel loop:
• All iterations independent, no barriers
• parallel_for(range<1>{1024}, [=](id<1> it) {…});

• NDRange:
• 2 (or 3) level hierarchy: work-items collected into work-groups (and sub-groups)
• Work-group barriers allowed “anywhere”
• parallel_for(nd_range<1>{{1024}, {16}}, [=](nd_item<1> it)
{…});

• NDRange must allow work-items reach barriers
• Execution of work-items must “yield” control to allow other work-items to reach barrier
• On CPUs, work-items need C++ fibers, threads, etc, work-groups are threaded
• On GPUs: maps naturally to underlying models (CUDA, HIP, OpenCL, …)

30https://doi.org/10.1109/HiPar54615.2021.00007

Coalescence

• Coalesce - to combine into one

• Coalesced memory accesses are key for high
bandwidth

• Simply, it means, if "thread" i accesses memory
location n then "thread" i+1 accesses memory
location n+1

• In practice, it’s not quite as strict…

• Stride one memory access often maps well to the
underlying hardware:
• SIMD lanes, GPU threads, …

for (int id = 0; id < size; id++)
{
// ideal

float val1 = memA[id];

// still pretty good
const int c = 3;
float val2 = memA[id + c];

// stride size is not so good
float val3 = memA[c*id];

// terrible
const int loc =
some_strange_func(id);

float val4 = memA[loc];
} 31

Achieving performance portability

1. Use open (standard) parallel programming languages supported by multiple
vendors across multiple hardware platforms
• E.g. OpenMP, SYCL, Kokkos, Raja, …

2. Expose maximal parallelism at all levels of the algorithm and application
• E.g. target teams distribute parallel for simd

3. Keep data close to the processing elements for as long as possible
• Avoid host/device copies

4. Avoid over-optimising for any one platform
• Optimise for at least two different platforms at once

5. Multi-objective autotuning can significantly improve performance
• Autotune for more than one target at once
• See: Exploiting auto-tuning to analyze and improve performance portability on many-core

architectures, J.Price and S. McIntosh-Smith, P^3MA, ISC’17

32

33

https://www.iwocl.org

Register for free now!

https://www.iwocl.org/

More information
S. J. Pennycook, J. D. Sewall, D. W. Jacobsen, T. Deakin and S. McIntosh-Smith, "Navigating Performance, Portability, and
Productivity," in Computing in Science & Engineering, vol. 23, no. 5, pp. 28-38, 1 Sept.-Oct. 2021, doi:
10.1109/MCSE.2021.3097276.
T. Deakin, S. McIntosh-Smith, S. J. Pennycook and J. Sewall, "Analyzing Reduction Abstraction Capabilities," 2021 International
Workshop on Performance, Portability and Productivity in HPC (P3HPC), 2021, pp. 33-44, doi: 10.1109/P3HPC54578.2021.00007.
T. Deakin, S. McIntosh-Smith, A. Alpay and V. Heuveline, "Benchmarking and Extending SYCL Hierarchical Parallelism," 2021 IEEE/ACM
International Workshop on Hierarchical Parallelism for Exascale Computing (HiPar), 2021, pp. 10-19, doi:
10.1109/HiPar54615.2021.00007.
T. Deakin, J. Price, M. Martineau, S. McIntosh-Smith, “Evaluating attainable memory bandwidth of parallel programming models
via BabelStream,” in International Journal of Computational Science and Engineering (IJCSE), Vol. 17, No. 3, 2018.
T. Deakin, A. Poenaru, T. Lin and S. McIntosh-Smith, "Tracking Performance Portability on the Yellow Brick Road to Exascale," 2020
IEEE/ACM International Workshop on Performance, Portability and Productivity in HPC (P3HPC), 2020, pp. 1-13, doi:
10.1109/P3HPC51967.2020.00006.
J. Sewall, S. J. Pennycook, D. Jacobsen, T. Deakin and a. S. McIntosh-Smith, "Interpreting and Visualizing Performance Portability
Metrics," 2020 IEEE/ACM International Workshop on Performance, Portability and Productivity in HPC (P3HPC), 2020, pp. 14-24, doi:
10.1109/P3HPC51967.2020.00007.
Wei-Chen Lin, Tom Deakin, and Simon McIntosh-Smith. 2021. On measuring the maturity of SYCL implementations by tracking
historical performance improvements. In International Workshop on OpenCL (IWOCL'21). Association for Computing Machinery, New
York, NY, USA, Article 8, 1–13. DOI:https://doi.org/10.1145/3456669.3456701
Tom Deakin and Simon McIntosh-Smith. 2020. Evaluating the performance of HPC-style SYCL applications. In Proceedings of the
International Workshop on OpenCL (IWOCL’20). Association for Computing Machinery, New York, NY, USA, Article 12, 1–11.
DOI:https://doi.org/10.1145/3388333.3388643
T. Deakin et al., "Performance Portability across Diverse Computer Architectures," 2019 IEEE/ACM International Workshop on
Performance, Portability and Productivity in HPC (P3HPC), 2019, pp. 1-13, doi: 10.1109/P3HPC49587.2019.00006.
https://uob-hpc.github.io/

34

https://uob-hpc.github.io/

