Code Portability
and Performance

.....

pan
.........
-

‘‘‘‘‘

Elic University of
BRISTOL

Dr Tom Deakin

e Lecturer in Advanced Computer Systems
University of Bristol

e Khronos SYCL Outreach Officer

* Chair Khronos SYCL Advisory Panel
 Member of OpenMP ARB and Khronos SYCL Working Group

* Programming GPUs with OpenMP Tutorials
e Author of OpenMP for Computational Scientists Tutorial

e Co-Author of HandsOnOpenCL

— -

Twitter: @tjdeakin
 Email: tom.deakin@bristol.ac.uk
* Web: https://hpc.tomdeakin.com

. &

mailto:tom.deakin@bristol.ac.uk
https://hpc.tomdeakin.com/

Elic University of

0| A&y
Agenda EAE BRISTOL

* Performance Portability
* What is Performance Portability?
 How to measure Performance Portability and efficiency
* Performance Portability Metric

* Consistency of performance portability
e Cascade Plots

* The Productivity Dimension

* Writing Performance Portable Applications
e ...in SYCL and OpenMP

Elic University of
BRISTOL

Performance Portability

Elic University of

. . S
Processor diversity at (pre-)Exascale K] BRISTOL

At RIKEN: Fujitsu A64fx CPUs
At NERSC: AMD EPYC Milan CPUs and NVIDIA A100 GPUs
At ORNL: AMD EPYC custom CPUs and Radeon Instinct GPUs (4 per node)

At ALCF: Intel Xeon Sapphire Rapids CPUs and Xe Ponte Vecchio GPUs (6 per node)

At LLNL: AMD EPYC Genoa CPUs and Radeon Instinct GPUs (4 per node)

The Next Platform, Jan 13th 2020: “HPC in 2020: compute engine diversity gets real”
https://www.nextplatform.com/2020/01/13/hpc-in-2020-compute-engine-diversity- 5
gets-real/

University of
Recent architectural trends clied BRISTOL

Latency Throughput

CPUs GPUs

* Many “complex” cores (80 per * Lots of “lightweight” cores.
SOFkEt)° * Very wide vector units (warp).

. \t;Ytlg)e vectors (AVX-512, SVE 128-2048 |, ~, e becoming more complex:

» Specialised in-core accelerators.
Interconnects (NVLink).

Latest (specialised) memory

* Chiplet manufacturing.
* Deep cache hierarchy. NUMA.

* Mainly DRAM, but... technology:
* Intel Xeon Phi MCDRM * GDDR
* Fujitsu A64FX HBM2 * HBM

* NVIDIA Grace LPDDR5x * Deepening memory hierarchy:

* Caches, scratchpad (shared), ...

University of
What is performance portability? Ak BRISTOL

“A code is performance portable if it can achieve a similar fraction of
peak hardware performance on a range of different target architectures”

* Needs to be a good fraction of best e <
achievable (i.e., hand optimised). - / i / SN =2
A Gl N, & w‘«
74) G R
* Range of architectures depends on f\\ R | e | / Lo } |
| 3 \ ol

your goal, but important to allow for e S TR R ey
future developments.

Image from Wikipedia, public domain 7

Elic University of

- oo n|ay
Measuring efficiency (AL BRISTOL

 Compare relative application performance on different processors.
* Processors have different performance characteristics.

* Architectural efficiency:
* Percentage of peak hardware performance.
* E.g. achieved GB/s or FLOP/s vs theoretical tech sheet.

* Application efficiency:
* Performance relative to specialised, hand-tuned, unportable, “best” version.
* |.e. vs “World record”.

=AKC University of

Collecting performance data el BRISTOL

* Compiling codes on multiple
systems crucial : EE

& UoB-HPC / performance-portability ' Public O Notifications % Fork 3 ¥ star 6

<> Code © Issues 1% Pull requests ® Actions [Projects 07 wiki @ security |~ Insights

C p . | . d .t | | It . p I
g ¥ main v performance-portability / benchmarking / 2020 / babelstream / Go to file
] .
C O m p I e rS C r l | C I a andreipoe Add 2020 benchmarking scripts and results 29¢b81d on 15 Oct 2020 O History

a64fx-fx1000 Add 2020 benchmarking scripts and results 2 years ago
° ampere-zoo Add 2020 benchmarking scripts and results 2 years ago

e Document com o] |e an d
cxl-swan Add 2020 benchmarking scripts and results 2 years ago

[[] [] graviton2-aws Add 2020 benchmarking scripts and results 2 years ago
execution ste pS IN syste matic
irispro580-z00 Add 2020 benchmarking scripts and results 2 years ago

. . knl-swan Add 2020 benchmarking scripts and results 2 years ago

andgre p roauciobie Scri ptS
p100-isambard Add 2020 benchmarking scripts and results 2 years ago

power9-isambard Add 2020 benchmarking scripts and results 2 years ago

radeonvii-zoo Add 2020 benchmarking scripts and results 2 years ago

results Add 2020 benchmarking scripts and results 2 years ago

rome-bluepebble Add 2020 benchmarking scripts and results 2 years ago

skl-swan Add 2020 benchmarking scripts and results 2 years ago

https://github.com/UoB-HPC/performance-portability

University of

AR
Core-bound, or not core-bound? (AIEI BRISTOL

* Follow a procedure by Voysey (Met Office) to help discover performance
limiting factors:
1. Run on all cores of one socket. (e.g. 18 cores of one Broadwell socket)
2. Run on half of cores of both sockets. (e.g. 2 x 9 cores)

* |f performance improves, performance is bound in shared resources such
as memory bandwidth.
* E.g. Two sockets give you twice the main memory bandwidth of one socket.

e Otherwise, bound by on-core resources.

* Same number of cores, so have same number of FLOPs, same cache bandwidth/size,
etc.

* Warning! Sometimes see increase in clock speed for the two-socket run.

A. Voysey and M. Glover. “Performance of Met Office Weather and Climate Codes on Cavium ThunderX2 Processors.” (2018).
URL https://www.youtube.com/watch?v=xSLYORJBEAQ. Presentation at Arm Research Summit, Austin, Texas.

% University of

)
BabelStream (L BRISTOL

* Based on McCalpin STREAM, except:

* Arrays allocated on the heap.
* Problem size known only at runtime.

* Written in many programming models.

e Constructed of simple vector operations, e.g.:
* Copy: cli] = ali]
e Mul: b[i] = scalar * c[i]
e Add: c[i] = a[i] + b[i]
e Triad: a[i] = b[i] + scalar * c[i]

* Benchmarks achievable (main) memory bandwidth. &\

https://github.com/UoB-HPC/BabelStream

11

https://github.com/UoB-HPC/BabelStream

Elic University of

. . LS
Modelling memory bandwidth LI BRISTOL

e Arrays of size N FP64 elements

00
* Read B and C: 2N
* Write A: N void triad() {
* Total 3N * sizeof(double)
=3 * N * 8 bytes #pragma omp parallel for
=24 * N bytes for (int 1 = 0; 1 < array_size; i++) {

a[i] = b[1] + scalar * c[i];

* Divide by runtime to get
bytes/second

* Multiply by 1E-9 to get GB/sec
(base 10)

 Compare to theoretical peak for
architectural efficiency

}

12

Elic University of

AL
BabelStream heatmaps (LI BRISTOL

Peak performance Architectural efficiency
BabelStream Triad array size=2%**25 BabelStream Triad array size=2%%25
Cascade Lake
Skylake x86 Intel X]
Knights Landing X 100
Rome x86 AMD [X |
Power 9 POWER IBM | X X %
ThunderX?2 X Arm X X
Graviton 2 X (Marvell Amazon X X X
A64FX X i X X X 60
P100
V100 2
A100
Turing
Radeon VII AMD GPU 20
MI50
IrisPro Gen9 Intel GPU

https://doi.org/10.1109/P3HPC51967.2020.00006 13

Elic University of

i . S
Performance Portability metric LI BRISTOL

Pennycook, Sewall and Lee: https://doi.org/10.1016/j.future.2017.08.007

H]
]- lf; \71 = 15[from statistics import harmonic_mean
def pp(n):
CP(a, D H) — Z ei(a,p) # 0 if 0 in n:
5 L9 . 6'(&)
icH €;\A, P return

return harmonic_mean(n)

0 otherwise

Python scripts: https://github.com/UoB-HPC/performance-portability/tree/main/metrics

14

https://github.com/UoB-HPC/performance-portability/tree/main/metrics

-% University of

§
BabelStream Triad PP metric G5 BRISTOL
Platforms OpenMP Kokkos OpenACC CUDA OpenCL SYCL
All 75.1 0 0 0 0 0
All non-zero 75.1 75.4 27.3 86.1 46.6 47.4
Supported CPUs 77.9 71.6 35.9 0 30.8 36.1
Supported GPUs 72.2 81.2 22.8 86.1 81.4 81.7

https://doi.org/10.1109/P3HPC51967.2020.00006 15

Elic University of
BRISTOL

How far have we come?

model = OpenMP model = Kokkos

__100
O\o
> 80 f
Q0
2 60 0 —C— -$
L
©
= 40
k3]
2
= 20
o
<
0
2018 2019 2020 2018 2019 2020
Year Year
® Broadwell ® Knights Landing ® P100 ® Skylake (]

https://doi.org/10.1109/P3HPC51967.2020.00006

model = OpenACC model = OpenCL

2018 2019 2020 2018 2019 2020
Year Year
Power 9 ® Thunderx2 ® V100 ® Turing Radeon VI

16

Elic University of

e
How far has SYCL come? (LT BRISTOL

—A— cxl-isambard ~ —— rome-isambard —e— uhdp630-devcloud —4— cxl-isambard ~ —4— rome-isambard —— uhdp630-devcloud

@ @

s = £ S A AR L S Ly DS

0 QN N NN N N NN NN NONN N v % N v vy N v A O A Y Vo A

‘= 100 A ~ 100 -

Q Q

< i

(@)] (@)]

k=) o

< 80 - < 801 o009 00 o o 0 o 0 o¢ *—o—9

£ £

° ©

2 60 2 60-

C C

3 3

> 40 - 2401 g9 9 o o099 0 o9 9o o o 9

o (@)

IS 1S

Q Q

£ 20- £ 20

- ®

©

8- 0 T T T T T T T T T T T 8 O T T T T T T T T T T

NS X A o 6 ol &) 0 v Al Yy

VA0 oY o Y A0 oY o Y A0 o o o P VP A0 Ay A L0
QY AT A0 A0 0V .o OV A0V A0 O S 0 0 0 [\ 0 [\ 0 \ [\ N o A
B S\ S S S S (S N IS IS S 1 PN 1 LN L (1 PN L U\ P P\ P\ LA\ 2

Release date

Figure 1: BabelStream on ComputeCpp results

https://doi.org/10.1145/3456669.3456701

Release date

Figure 4: BabelStream on DPC++ results

17

Elic University of
BRISTOL

Consistency of Performance
Portability

What is performance portability?

Elic University of
BRISTOL

“A code is performance portable if it can achieve
peak hardware performance on a range of different1

3 similar fraction pf

* Needs to be a good fraction of best
achievable (i.e., hand optimised).

* Range of architectures depends on
your goal, but important to allow for
future developments.

2 / i) SN "
?—‘\\; #' \ 2 Id [‘ 2 \.! ;.;'. ‘l%'r:‘; —"‘\;\h ‘
{ \\ \ | A > E ‘ \ A M “
| 3 , \ = ;\-'.:I ; ,’ \/ .A\
) e R
\ , Q" L;. 14 \) ‘L' > k.'~
2 P o) ',vsr‘\ o < e i"ﬁf

Image from Wikipedia, public domain 19

Elic University of

AL
Cascade plots BIEI BRISTOL

Unportable eff.
Unportable PP
Single Target eff.
Single Target PP
Multi-Target eff.
Multi-Target PP
Consistent (30%) eff.
Consistent (30%) PP
Inconsistent eff.
Inconsistent PP
Consistent (70%) eff.

[N
(@)
|

pphpdpitid

App PP (dashed)/efficiency (solid)

=l = Consistent (70%) PP
A E H
0.0 M B Ml F I
C m G J
D

1 2 3 4 5 6 7 8 9 10
of platforms

https://doi.org/10.1109/P3HPC51967.2020.00007 20

0O <

),

[©
-/
©O Name -

ES M app_platfor..

Adaptive Ke...

% M babelstrea...
7 Binned cha...
= Box plot gr...
= Clustered b...

»
[Efficiency ... a minute ago

= Efficiency ...
M synthetic_c...

D

File Edit View Run Kernel

S c

Last
Modified

a month ago
6 months ago
15 days ago
6 months ago
6 months ago
6 months ago

a month ago
16 days ago

O M1 @ Python3]|Idle

Tabs

a

+

localhost

Settings Help

= Efficiency Cascadex

X B [» = c » Code v
import pp_vis

Colours from https://personal.sron.nl/~pault/

app_colors = {
"Unportable":
"Single Target": "#33BBEE",
"Multi-Target": "#009988",
"Consistent (30%)": "#EE7733",
"Consistent (70%)": "#CC3311",
"Inconsistent": "#EE3377",

"#0077BB" ,

}
plat_order=["OpenMP", "Kokkos", "OpenACC", "CUDA", "OpenCL", "SYCL"]
csv_root="../data/"

effs_df = pp_vis.app_effs(os.path.join(csv_root, "synthetic.csv"), raw_effs=True)

fig = plt.figure(figsize=(4, 4))

plat_colors = {}

plat_handles = []

synth_plats=effs_df [effs_df.columns[0]]

plat_cmap = mcolors.ListedColormap([
"#762A83",
"'#9970AB"
"#C2A5C
"#ETD4ES",
“#FTFTF7"
"'#1B783
"#5AAE61",
"#ACD39E",
"#D9F@D3"

1)

for i, p in enumerate(synth_plats):
plat_colors[p] = plat_cmap(float(i)/(len(synth_plats)-1))
plat_handles.append(mpatches.Patch(color=plat_colors[pl, label=p))

handles = {}
gs = fig.add_gridspec(1,1)
index = [0, 0]

pp_vis.plot_cascade(fig, gs, index, effs_df, handles, app_colors=app_colors, plat_colors=plat_colors)
handle_names, handle_lists = zip(xhandles.items())

fig.legend(handle_lists, handle_names, loc='upper left', bbox_to_anchor=(1.0,1.0),ncol=1, handlelength=2.0)
fig.legend(handles=plat_handles, loc='lower left', bbox_to_anchor=(1.0,0.1), ncol=3, handlelength=1.0)
plt.tight_layout(pad=0.4,w_pad=0.5, h_pad=1.0)

plt.savefig(f"synthetic_cascade.png", dpi = 300 ,bbox_inches="tight")

== Unportable off.

Targe
-~ MultiTargot PP
== Consistent (30%) off.
8- Consistent (30%) PP
== Inconsistent ef.
=~ Inconsistent PP

== Consistent (70%) off
== Consistent (70%) PP

"
1
3

omm

cows

113

I 7
of platforms.

Saving completed

Python 3 O

Mode: Command © Ln1, Col1 Efficiency Cascades BabelStream 2020.ipynb

&

P

University of

4 BRISTOL

https://github.com/UoB-HPC/performance-portability/tree/main/metrics/notebooks

21

Elic University of

nly
BabelStream Cascade plot K] BRISTOL

CUDA eff.
CUDA PP
OpenACC eff.
OpenACC PP
OpenCL eff.
OpenCL PP
Kokkos eff.
Kokkos PP
SYCL eff.
SYCL PP
OpenMP eff.
OpenMP PP

i

H
o
1
I
Y
| |

App PP (dashed)/efficiency (solid)
© © ©
NN o o
-ip
I I] | I
BERERED S

o
N
1

CpPUO W GPUO
CPU1 Il GPU1
CpU2 W GPU2
CPU3 GPU3
CpPU4 GPU4

) 1 I I)) 1 I I CPU5 GPU5
7 8 9 10 11 12 13 14 15 CPU6 GPU6
of platforms CPU7

1 2 3 4 5 6

Data from https://doi.org/10.1109/P3HPC51967.2020.00006 22

ece M-+ < > [)] @ ieeexplore.ieee.org ¢

Conferences > 2020 IEEE/ACM International W... @

Interpreting and Visualizing Performance Portability Metrics

Publisher: IEEE PDF

Jason Sewall ; S. John Pennycook ; Douglas Jacobsen ; Tom Deakin ; and Simon Mcintosh-Smith ~ All Authors

3 177
Paper Full Q@ < © ‘

Citations Text Views

Abstract Abstract:

Recent work has introduced a number of tools and techniques for reasoning about the
interplay between application performance and portability, or "performance portability".
I. Introduction These tools have proven useful for setting goals and guiding high-level discussions, but our
understanding of the performance portability problem remains incomplete. Different views of

Document Sections

Il Background / the same performance efficiency data offer different insights into an application's
Motivation performance portability (or lack thereof): standard statistical measures such as the mean

Il Single Number and standard deviation require careful interpretation, and even metrics designed specifically
Metrics to measure performance portability may obscure differences between applications.This

paper offers a critical assessment of existing approaches for summarizing performance
IV. Distribution Across efficiency data across different platforms, and proposes visualization as a means to extract
Platforms useful information about the underlying distribution. We explore a number of alternative
visualizations, outlining a new methodology that enables developers to reason about the
performance portability of their applications and how it might be improved. This study

unpicks what it might mean to be "performance portable" and provides useful tools to
___Show Full Outline v avnlara that Aanactinn

V. Impact of Platform

Selection

Need

Elic University of

Ay

Full-Text

access to IEEE Xplore
for your organization?

REQUEST A FREE TRIAL >

More Like This

Is software aging related to

software metrics?

2010 IEEE Second International
Workshop on Software Aging and

Rejuvenation
Published: 2010

Uncovering Causal Relationships

between Software Metrics and

Bugs

2012 16th European Conference on
Software Maintenance and

Reengineering
Published: 2012

Feedback

https://doi.org/10.1109/P3HPC51967.2020.00007

BRISTOL

23

Elic University of
BRISTOL

The Productivity Dimension

Elic University of

: o LS
Measuring Productivity BIE BRISTOL

* “Ideal” application has one version that is Performant, Portable and
Productive.

* Significant specialisation for Performance and/or Portability can
impact Productivity.

* Intel Code Base Investigator measures code divergence.
» Specialisation using C pre-processor.

https://github.com/intel/code-base-investigator

Harrell et al https://doi.org/10.1109/P3HPC.2018.00006

25

https://github.com/intel/code-base-investigator

1.0 @

PP-CC plane

0.8 -

the PP=1, CC=0 by
combining the best
codes for each
platform into an
application

Can always construct

0.6 -

0.4 -

Falling CC indicates
that platform-specific
code is being added,
or common code is
being removed. This
is commonly found
as codes are
specialized.

0.2

Being on the PP = 0 axis or more platforms.
is anomalous, since at
least one platform is

failing

0.0

Rising PP results from performance
increasing in one more more platforms.
Broad or narrowly-focused
optimizations cause this.

Everyone wants to be ‘ % UniVerSity Of

here: single source, best
performance everywhere
But not realistic.

uonezrundQ

Specialization

UOISSAIZY

Falling PP is rarely intentional.
New features in applications may
cause performance to drop in one

Removing specialization
or adding common code
increases convergence;
this is typical of
introducing more and

BRISTOL

higher-level abstractions.

0.

Figure from
https://doi.org/10.1109/MCSE.2021.3097276

|
0 0.2
Code Convergence (1- Code Divergence)

| |
0.4 0.6

|
0.8 1.0

26

Elic University of
BRISTOL

Writing Performance Portable
Applications

Elic University of

- " AL
Enabling performance portability B BRISTOL

Open standard parallel programming models

@CLW openct. OpenMP

Enabling HPC since 1997

Open-source programming abstractions

Zkokkos RAJV =i

All images copyright of respective owners.

Elic University of

' : : : 0| A&y
Descriptive vs Prescriptive [AEI BRISTOL

. Eescriptive: describe computation, but implementation freedom to decide
ow

* Prescriptive: all details provided of how to perform computation

* Descriptive is productive, but need the flexibility to prescribe where
needed for performance

* Collapse() clause:
* Good on GPUs for providing lots of parallel work.
* But care needed with auto-vectorising compilers on CPUs — check the report!

* Avoid the more prescriptive clauses: num_threads, num_teams,

thread_limit, etc

e Let the runtime decide
* Use environment variables to specialise on platforms if needed

Supinski, et at, https://doi.org/10.1109/JPROC.2018.2853600

Elic University of

: : : TS
Expressing Parallelism in SYCL [BIEI BRISTOL

* Data parallel loop:

* All iterations independent, no barriers
* parallel for(range<l1>{1024}, [=] (1d<1> 1it) {..});

* NDRange:
e 2 (or 3) level hierarchy: work-items collected into work-groups (and sub-groups)
* Work-group barriers allowed “anywhere”

. %a{?llel_for(nd_range<1>{{1024}, {l6}}, [=](nd item<l> it)

 NDRange must allow work-items reach barriers
* Execution of work-items must “yield” control to allow other work-items to reach barrier
* On CPUs, work-items need C++ fibers, threads, etc, work-groups are threaded
* On GPUs: maps naturally to underlying models (CUDA, HIP, OpenCL, ...)

https://doi.org/10.1109/HiPar54615.2021.00007 30

Coalescence

* (Coalesce - to combine into one

* Coalesced memory accesses are key for high
bandwidth

* Simply, it means, if "thread" i accesses memory
location n then "thread" i+1 accesses memory
location n+1

* |n practice, it’s not quite as strict...

» Stride one memory access often maps well to the
underlying hardware:

e SIMD lanes, GPU threads, ...

{

//

//

//

//

Elic University of
BRISTOL

for (int id = 0; id < size; id++)
ideal
float vall = memA[id];

still pretty good
const int ¢ = 3;
float val2 = memA[id + c];

stride size is not so good
float val3 = memA[c*id];

terrible
const int loc =
some strange func(id);

float vald = memA[loc];

31

Elic University of

oyt " S
Achieving performance portability K] BRISTOL

1. Use open (standard) parallel programming languages supported by multiple
vendors across multiple hardware platforms

 E.g. OpenMP, SYCL, Kokkos, Raja, ...

2. Expose maximal parallelism at all levels of the algorithm and application
* E.g. target teams distribute parallel for simd

3. Keep data close to the processing elements for as long as possible
* Avoid host/device copies

4. Avoid over-optimising for any one platform
 Optimise for at least two different platforms at once

5. Multi-objective autotuning can significantly improve performance
e Autotune for more than one target at once

* See: Exploiting auto-tuning to analyze and imRrove performance portability on many-core
architectures, J.Price and S. Mclntosh-Smith, PA3MA, ISC’17

32

Register for free now! = A

~ I W 0 c L & SYC L con CALL FOR SUBMISSIONS ~ ARCHIVE MORE Q

10th International
Workshop on OpenCL and

SYCL

May 10-12, 2022 - VIRTUAL

https://www.iwocl.org

https://www.iwocl.org/

University of
More information dled BRISTOL

S. J. Pennycook, J. D. Sewall, D. W. Jacobsen, T. Deakin and S. MclIntosh-Smith, "Navigating Performance, Portability, and
Productivity," in Computing in Science & Engineering, vol. 23, no. 5, pp. 28-38, 1 Sept.-Oct. 2021, doi:
10.1109/MCSE.2021.3097276.

T. Deakin, S. Mclntosh-Smith, S. J. Pennycook and J. Sewall, "Analyzing Reduction Abstraction Capabilities," 2021 International
Workshop on Performance, Portability and Productivity in HPC (P3HPC), 2021, pp. 33-44, doi: 10.1109/P3HPC54578.2021.00007.

T. Deakin, S. McIntosh-Smith, A. Alpay and V. Heuveline, "Benchmarking and Extending SYCL Hierarchical Parallelism," 2021 IEEE/ACM
International Workshop on Hierarchical Parallelism for Exascale Computing (HiPar), 2021, pp. 10-19, doi:
10.1109/HiPar54615.2021.00007.

T. Deakin, J. Price, M. Martineau, S. MclIntosh-Smith, “Evaluating attainable memory bandwidth of parallel programming models
via BabelStream,” in International Journal of Computational Science and Engineering (IJCSE), Vol. 17, No. 3, 2018.

T. Deakin, A. Poenaru, T. Lin and S. Mclntosh-Smith, "Tracking Performance Portability on the Yellow Brick Road to Exascale," 2020
IEEE/ACM International Workshop on Performance, Portability and Productivity in HPC (P3HPC), 2020, pp. 1-13, doi:
10.1109/P3HPC51967.2020.00006.

J. Sewall, S. J. Pennycook, D. Jacobsen, T. Deakin and a. S. Mclntosh-Smith, "Interpreting and Visualizing Performance Portability
Metrics," 2020 IEEE/ACM International Workshop on Performance, Portability and Productivity in HPC (P3HPC), 2020, pp. 14-24, doi:
10.1109/P3HPC51967.2020.00007.

Wei-Chen Lin, Tom Deakin, and Simon McIntosh-Smith. 2021. On measuring the maturity of SYCL implementations by tracking
historical performance improvements. In International Workshop on OpenCL (IWOCL'21). Association for Computing Machinery, New
York, NY, USA, Article 8, 1-13. DOl:https://doi.org/10.1145/3456669.3456701

Tom Deakin and Simon Mcintosh-Smith. 2020. Evaluating the performance of HPC-style SYCL aplczlications. In Proceedings of the
International Workshop on OpenCL (IWOCL'20). Association for Computing Machinery, New York, NY, USA, Article 12, 1-11.
DOl:https://doi.org/10.1145/3388333.3388643

T. Deakin et al., "Performance Portability across Diverse Computer Architectures," 2019 IEEE/ACM International Workshop on
Performance, Portability and Productivity in HPC (P3HPC), 2019, pp. 1-13, doi: 10.1109/P3HPC49587.2019.00006.

https://uob-hpc.github.io/

https://uob-hpc.github.io/

