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Performance Portability
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Processor diversity at (pre-)Exascale
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At ORNL: AMD EPYC custom CPUs and Radeon Instinct GPUs (4 per node)

At ALCF: Intel Xeon Sapphire Rapids CPUs and Xe Ponte Vecchio GPUs (6 per node) 

At LLNL: AMD EPYC Genoa CPUs and Radeon Instinct GPUs (4 per node)

At RIKEN: Fujitsu A64fx CPUs

At NERSC: AMD EPYC Milan CPUs and NVIDIA A100 GPUs

The Next Platform, Jan 13th 2020: “HPC in 2020: compute engine diversity gets real”
https://www.nextplatform.com/2020/01/13/hpc-in-2020-compute-engine-diversity-
gets-real/ 



Recent architectural trends

CPUs
• Many “complex” cores (80 per 

socket).
• Wide vectors (AVX-512, SVE 128-2048 

bits).
• Chiplet manufacturing.
• Deep cache hierarchy. NUMA.
• Mainly DRAM, but…

• Intel Xeon Phi MCDRM
• Fujitsu A64FX HBM2
• NVIDIA Grace LPDDR5x

GPUs
• Lots of “lightweight” cores.
• Very wide vector units (warp).
• Cores becoming more complex:

• Specialised in-core accelerators.
• Interconnects (NVLink).
• Latest (specialised) memory 

technology:
• GDDR
• HBM

• Deepening memory hierarchy:
• Caches, scratchpad (shared), …
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What is performance portability?

• Needs to be a good fraction of best 
achievable (i.e., hand optimised).

• Range of architectures depends on 
your goal, but important to allow for 
future developments.

7Image from Wikipedia, public domain

“A code is performance portable if it can achieve a similar fraction of 
peak hardware performance on a range of different target architectures”



Measuring efficiency

• Compare relative application performance on different processors.
• Processors have different performance characteristics.
• Architectural efficiency:
• Percentage of peak hardware performance.
• E.g. achieved GB/s or FLOP/s vs theoretical tech sheet.

• Application efficiency:
• Performance relative to specialised, hand-tuned, unportable, “best” version.
• I.e. vs “World record”.

8



Collecting performance data

• Compiling codes on multiple 
systems crucial
• Compiling codes with multiple 

compilers crucial
• Document compile and 

execution steps in systematic 
and reproducible scripts
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https://github.com/UoB-HPC/performance-portability



Core-bound, or not core-bound?

• Follow a procedure by Voysey (Met Office) to help discover performance 
limiting factors:
1. Run on all cores of one socket. (e.g. 18 cores of one Broadwell socket)
2. Run on half of cores of both sockets. (e.g. 2 x 9 cores)

• If performance improves, performance is bound in shared resources such 
as memory bandwidth.
• E.g. Two sockets give you twice the main memory bandwidth of one socket.

• Otherwise, bound by on-core resources.
• Same number of cores, so have same number of FLOPs, same cache bandwidth/size, 

etc.
• Warning! Sometimes see increase in clock speed for the two-socket run.

10

A. Voysey and M. Glover. “Performance of Met Office Weather and Climate Codes on Cavium ThunderX2 Processors.” (2018). 
URL https://www.youtube.com/watch?v=xSLY0RJBEAQ. Presentation at Arm Research Summit, Austin, Texas. 



BabelStream

• Benchmarks achievable (main) memory bandwidth.
• Based on McCalpin STREAM, except:
• Arrays allocated on the heap.
• Problem size known only at runtime.

• Written in many programming models.
• Constructed of simple vector operations, e.g.:
• Copy: c[i] = a[i]
• Mul: b[i] = scalar * c[i]
• Add: c[i] = a[i] + b[i]
• Triad: a[i] = b[i] + scalar * c[i]
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https://github.com/UoB-HPC/BabelStream

https://github.com/UoB-HPC/BabelStream


Modelling memory bandwidth

• Arrays of size N FP64 elements
• Read B and C: 2N
• Write A: N
• Total 3N * sizeof(double)

= 3 * N * 8 bytes
= 24 * N bytes
• Divide by runtime to get 

bytes/second
• Multiply by 1E-9 to get GB/sec 

(base 10)
• Compare to theoretical peak for 

architectural efficiency
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BabelStream heatmaps
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Performance Portability metric
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Pennycook, Sewall and Lee: https://doi.org/10.1016/j.future.2017.08.007

Python scripts: https://github.com/UoB-HPC/performance-portability/tree/main/metrics

https://github.com/UoB-HPC/performance-portability/tree/main/metrics


BabelStream Triad PP metric
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Platforms OpenMP Kokkos OpenACC CUDA OpenCL SYCL
All 75.1 0 0 0 0 0
All non-zero 75.1 75.4 27.3 86.1 46.6 47.4
Supported CPUs 77.9 71.6 35.9 0 30.8 36.1
Supported GPUs 72.2 81.2 22.8 86.1 81.4 81.7

https://doi.org/10.1109/P3HPC51967.2020.00006



How far have we come?

16https://doi.org/10.1109/P3HPC51967.2020.00006



How far has SYCL come?

17https://doi.org/10.1145/3456669.3456701



Consistency of Performance 
Portability
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What is performance portability?

• Needs to be a good fraction of best 
achievable (i.e., hand optimised).

• Range of architectures depends on 
your goal, but important to allow for 
future developments.

19Image from Wikipedia, public domain

“A code is performance portable if it can achieve a similar fraction of 
peak hardware performance on a range of different target architectures”



Cascade plots

20https://doi.org/10.1109/P3HPC51967.2020.00007
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https://github.com/UoB-HPC/performance-portability/tree/main/metrics/notebooks



BabelStream Cascade plot

22Data from https://doi.org/10.1109/P3HPC51967.2020.00006
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The Productivity Dimension

24



Measuring Productivity

• “Ideal” application has one version that is Performant, Portable and 
Productive.
• Significant specialisation for Performance and/or Portability can 

impact Productivity.
• Intel Code Base Investigator measures code divergence.
• Specialisation using C pre-processor.
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https://github.com/intel/code-base-investigator

Harrell et al https://doi.org/10.1109/P3HPC.2018.00006

https://github.com/intel/code-base-investigator


PP-CC plane
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Figure from 
https://doi.org/10.1109/MCSE.2021.3097276



Writing Performance Portable 
Applications

27



Enabling performance portability
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All images copyright of respective owners.

Open standard parallel programming models

Open-source programming abstractions

Your favourite 
DSL and its 
compiler



Descriptive vs Prescriptive

• Descriptive: describe computation, but implementation freedom to decide 
how
• Prescriptive: all details provided of how to perform computation
• Descriptive is productive, but need the flexibility to prescribe where 

needed for performance
• Collapse() clause:

• Good on GPUs for providing lots of parallel work.
• But care needed with auto-vectorising compilers on CPUs – check the report!

• Avoid the more prescriptive clauses: num_threads, num_teams, 
thread_limit, etc
• Let the runtime decide
• Use environment variables to specialise on platforms if needed
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Supinski, et at, https://doi.org/10.1109/JPROC.2018.2853600



Expressing Parallelism in SYCL

• Data parallel loop: 
• All iterations independent, no barriers
• parallel_for(range<1>{1024}, [=](id<1> it) {…});

• NDRange:
• 2 (or 3) level hierarchy: work-items collected into work-groups (and sub-groups)
• Work-group barriers allowed “anywhere”
• parallel_for(nd_range<1>{{1024}, {16}}, [=](nd_item<1> it) 
{…});

• NDRange must allow work-items reach barriers
• Execution of work-items must “yield” control to allow other work-items to reach barrier
• On CPUs, work-items need C++ fibers, threads, etc, work-groups are threaded
• On GPUs: maps naturally to underlying models (CUDA, HIP, OpenCL, …)

30https://doi.org/10.1109/HiPar54615.2021.00007



Coalescence

• Coalesce - to combine into one

• Coalesced memory accesses are key for high 
bandwidth

• Simply, it means, if "thread" i accesses memory 
location n then "thread" i+1 accesses memory 
location n+1

• In practice, it’s not quite as strict…

• Stride one memory access often maps well to the 
underlying hardware:
• SIMD lanes, GPU threads, …

for (int id = 0; id < size; id++)
{
// ideal

float val1 = memA[id];

// still pretty good 
const int c = 3;
float val2 = memA[id + c];

// stride size is not so good
float val3 = memA[c*id];

// terrible
const int loc =
some_strange_func(id);

float val4 = memA[loc];
} 31



Achieving performance portability

1. Use open (standard) parallel programming languages supported by multiple 
vendors across multiple hardware platforms
• E.g. OpenMP, SYCL, Kokkos, Raja, …

2. Expose maximal parallelism at all levels of the algorithm and application
• E.g. target teams distribute parallel for simd

3. Keep data close to the processing elements for as long as possible
• Avoid host/device copies

4. Avoid over-optimising for any one platform
• Optimise for at least two different platforms at once

5. Multi-objective autotuning can significantly improve performance
• Autotune for more than one target at once
• See: Exploiting auto-tuning to analyze and improve performance portability on many-core 

architectures, J.Price and S. McIntosh-Smith, P^3MA, ISC’17
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https://www.iwocl.org

Register for free now!

https://www.iwocl.org/
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